
Army Research Laboratory

Toward Autonomous Multi-floor Exploration: Ascending

Stairway Localization and Modeling

by Jeffrey A. Delmerico, Jason J. Corso, David Baran, and Philip David

ARL-TR-6381 March 2013

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated
by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6381 March 2013

Toward Autonomous Multi-floor Exploration: Ascending
Stairway Localization and Modeling

Jeffrey A. Delmerico, Jason J. Corso, David Baran, and Philip David

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHOR(S) 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:  
19a. NAME OF RESPONSIBLE PERSON

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

March 2013 Final

ARL-TR-6381

Approved for public release; distribution is unlimited.

Toward Autonomous Multi-Floor Exploration: Ascending Stairway Localization
and Modeling

Jeffrey A. Delmerico, Jason J. Corso, David Baran, and Philip David

U.S. Army Research Laboratory
ATTN: RDRL-CII-A
2800 Powder Mill Road
Adelphi, MD 20783-1197

primary author’s email: <david.g.baran.civ@mail.mil>

Localization and modeling of stairways by mobile robots can enable multi-floor exploration for those platforms capable of stair
traversal. No system yet presented is capable of localizing a stairway on a map and estimating its properties, two functions that
would enable stairways to be considered as traversable terrain in a path planning algorithm. We propose a system for detecting
and modeling an ascending stairway while performing simultaneous localization and mapping. We design a generative model
of a stairway as a single object and localize it with respect to the map, as well as estimate the dimensions of its steps. Modeling
the stairway as a whole will enable exploration of higher floors of a building by allowing the stairway to be incorporated into
path planning by considering it as a portal to new frontiers. Our system consists of two parts: a computationally efficient
detector that leverages geometric cues from depth imagery to detect sets of ascending stairs, and a stairway modeler that uses
multiple detections to infer the location and parameters of a stairway that is discovered during exploration. We demonstrate the
performance of this system when deployed on several mobile platforms.

Stair detection, stairway modeling, autonomous exploration, unmanned ground vehicle

UU 32

David Baran

(301) 394-5613Unclassified Unclassified Unclassified

ii



Contents

List of Figures iv

List of Tables vi

Acknowledgment vii

1. Introduction 1

2. Related Work 3

3. Methods 6

3.1 Stairway Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Localization and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Stair Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Experiments 11

4.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5. Future Work 16

6. Conclusions 18

7. References 19

Distribution List 21

iii



List of Figures

Figure 1. High level workflow of the proposed system, consisting of two modules: stair

edge detection and stairway modeling. Stair edges are extracted from depth imagery

and collected over many observations into an aggregated point cloud. Periodically,

a generative model of a stairway is fit to the aggregate cloud and its parameters re-

estimated. The result is a model localized with respect to the robot’s map of its en-

vironment. (Data: Building 1 Front trial of the Military Operation in Urban Terrain

[MOUT] dataset).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2. Stairway with corresponding model consisting of bounding box (green), planar

model (blue), and step edges (red), as well as edge point cloud support for step edge lines

(rainbow). (Data: Davis Hall Front trial from State University of New York [SUNY]

at Buffalo [UB] dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3. Figure showing a map marked up with a marker for the model of the detected

stairwell, in addition to a camera image and model view from the robot’s perspective.

(Data: Building 7 Interior trial from MOUT dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 4. An example frame from an indoor testing video. Top row (L to R): source depth

image, edge image, edge image with boundary lines removed. Bottom row (L to R):

candidate lines (in red) before filtering for orientation and clustering, candidate lines

after filtering, marked up camera image with bounding box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 5. Results of several runs from our datasets: Building 1 Rear (top left), Building 3

(top right), Building 7 Exterior (bottom left), and Davis Hall Rear (bottom right). . . . . . . . . . . 12

Figure 6. Figure showing one failure mode of our system, including camera and simulated

views from the robot’s perspective. Note that this stairway is both outdoors and of a

riser-less style, two challenges for our implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 7. Figure showing another failure mode, including the final model for the Container

trial and camera view from the robot’s perspective. Although our method is fairly robust

to misalignment, this example illustrates failure due in part to an uneven ground plane

and its corresponding odometry challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



Figure 8. Convergence of normalized model parameters for Davis Front (top) and Davis

Rear (bottom) trials from the UB dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



List of Tables

Table 1. Table of model step estimates and ground truth values (GT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



Acknowledgment

This material is based upon work partially supported by the Federal Highway Administration

(FHWA) under Cooperative Agreement No. DTFH61-07-H-00023, the Army Research Office

(ARO) (W911NF-11-1-0090) and the National Science Foundation (NSF) CAREER grant

(IIS-0845282). Any opinions, findings, conclusions or recommendations are those of the authors

and do not necessarily reflect the views of the FHWA, ARO, or NSF.

vii



viii 

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 



1. Introduction

Autonomous mobile robots have traditionally been restricted to single floors of a building or

outdoor areas free of abrupt elevation changes such as curbs and stairs. This restriction presents a

significant limitation to real-world applications, such as whole-building mapping and rescue

scenarios. Our work seeks a solution to this problem and is motivated by the rich potential of an

autonomous ground robot that can climb stairs while exploring a multi-floor building. Our

proposed solution to this problem is a system to detect and localize stairways in the environment

during the process of exploration, and model any identified stairways in order to determine if they

are traversable by the robot. With a map of the environment and estimated locations and

parameters of the stairways, the robot could plan a path that traverses the stairs in order to explore

the frontier at other elevations that were previously inaccessible. For example, a robot could

finish mapping the ground floor of a building, return to a stairway that it had previously

discovered, and ascend to the second floor to continue exploring if that stairway is of dimensions

(i.e., step height, width, and pitch) that are traversable by that particular platform. Autonomous

multi-floor exploration is a new behavior for ground robots, and we present this work as a first

step toward the realization of that capability.

Other systems have been proposed for related tasks, but no existing work approaches the problem

in the context of the aforementioned scenario. Several methods (1–3) perform detection and

traversal, but do not model the pose or location of the stairway and simply immediately initiate a

climbing mechanism. Although these capabilities are related to our problem scenario, immediate

climbing is not necessarily compatible with a mapping task. Path planning for multi-floor

exploration should take the stairway into account as a portal to more unexplored regions, but

traversing stairs immediately upon a single detection makes exploring the low-cost frontiers of the

original floor more difficult and may fail if the detection was erroneous. Several other existing

approaches (4–6) perform modeling of individual steps, or sets of them, but on a level that is both

unnecessarily detailed for the purposes of localization and too computationally expensive to be

practical on a platform whose primary task is exploration, not stairway detection. In particular, to

determine if a stairway is traversable and locate it on a map, the individual steps and risers do not

need to be modeled as planes nor does all of their corresponding three-dimensional (3-D) data

need to be extracted.

Our proposed system directly addresses the needs of an exploratory platform for solving the

problem defined above. It is composed of a stairway detection module for extracting stair edge
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points in 3-D from depth imagery and a stairway modeling module that aggregates many such

detections into a single point cloud from which the stairway’s dimensions and location are

estimated (figure 1). Modeling the stairway over many detections allows the system to form a

complete model from many partial observations. We model the stairway as a single object: an

inclined plane constrained by a bounding box, with stair edges lying in the plane. As new

observations are added to the aggregated point cloud, the model is re-estimated, outliers are

removed, and well-supported stair edges are used to infer the dimensions of each step. Section 3

contains a more in-depth description of our approach.

Stair Edge Detection
Extract stair edges from depth imagery by finding and

clustering lines of depth discontinuity

Stairway Modeling
Generative model: inclined plane within bounding box

Localize model on map and estimate step dimensions

Extract edge points from point cloud

Aggregate edge points

over many observations

Fit stairway model to aggregated edges 

Figure 1. High level workflow of the proposed system, consisting
of two modules: stair edge detection and stairway
modeling. Stair edges are extracted from depth imagery
and collected over many observations into an aggregated
point cloud. Periodically, a generative model of a
stairway is fit to the aggregate cloud and its parameters
re-estimated. The result is a model localized with
respect to the robot’s map of its environment. (Data:
Building 1 Front trial of the Military Operation in Urban
Terrain [MOUT] dataset).
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We have deployed this system on an iRobot PackBot as well as a TurtleBot, both fitted with

Microsoft Kinect depth sensors. Our system runs in real time and demonstrates robust and

accurate performance in both localization and parameter estimation for a wide variety of

stairways (see section 4).

This report presents the following contributions:

• Initial step toward new ground robot behavior: autonomous multi-floor exploration.

Locate stairwells during mapping of environment and later ascend them to explore new

frontiers.

• A minimalist generative stairway model: an inclined plane constrained within a bounding

box. This provides the right level of detail to determine if the stairway is traversable by the

robot. If necessary, more detailed modeling can be performed in the context of subsequent

stair traversal.

• Aggregation of many partial views into a coherent object model. Re-estimation and outlier

removal permits estimation of a robust aggregate model in the presence of a low-recall

detector and imprecise alignment.

• A novel approach to stair detection. Find lines of depth discontinuity representing convex

stair edges and enforce the constraints of the depth image signature of a stairway (nearly

parallel, overlapping in the vertical direction in image coordinates and lying on an inclined

plane). Filter in edge points from the associated point cloud as a partial view of the

stairway.

2. Related Work

Several existing methods perform stairway detection but immediately initialize a traversal

procedure, which is not necessarily desirable in an exploration scenario. In general, these

detection methods provide only a bearing, and possibly a distance, to the stairway relative to the

robot’s pose, and only serve to trigger the autonomous traversal phase of their systems. Ray et al.

(3) designed a robotic platform specifically for stairway traversal that performs stair edge

detection using Canny edge detection and a Hough transform on camera imagery. Their

approach imposes some similar constraints to ours on the detected line segments, but they use this

information only to determine a bearing to the stairway for immediate traversal. Some detection
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and pose correction for traversal are presented in Mihankhah et al. (2), where they use a

vertically oriented laser range finder to detect the set of regular discontinuities corresponding to

stairs and then maneuver the robot so it is lined up for traversal. Johnson et al. (1) detect stairs

using a horizontal two-dimensional (2-D) laser scanner, but their stair climbing behavior is

initiated as soon as a detection is made. However, their approach to traversal of stairs with

landings is an important contribution to multi-floor exploration. Other stair edge detection

systems have been proposed in the context of controller feedback for stair traversal (7, 8) and

object detection (9).

Some techniques have been presented for performing modeling of steps or sets thereof, but these

methods are not presented in the context of mapping and localization, and provide higher levels of

detail than are necessary for a robot to find and evaluate a stairway for later traversal. Osswald et

al. (4) use a combination of a 2-D laser range finder and a monocular camera to extract step edges

so a humanoid robot can perform step planning to ascend a spiral staircase. Pradeep et al. (5)

also use stereo vision and seek to explicitly model steps and stairs, and they perform plane fitting

using local normals, Random Sample Consensus (RANSAC), and clustering by tensor voting.

Lu and Manduchi (6) use Canny edge detection on one of the camera images from a stereo sensor,

and then compute a measure of concavity/convexity on those lines in the stereo depth field in

order to model curbs and stairs as alternating concave and convex lines on parallel planes. All of

these methods exhibit good accuracy and robustness, but the models are unnecessarily

fine-grained for localizing a stairway during exploration, and are too slow for real-time use.

The works by Hernandez and Jo (10) and Hernandez et al. (11) represent the most similar

approaches to ours in terms of the goal of detecting and localizing sets of stairs, but are

independent of modeling or mapping. In reference 10, they segment outdoor staircases from

single monocular images using line detection and vanishing point analysis, and in reference 11

they use some of the same line techniques (Gabor filtering) along with motion stereo to detect and

localize indoor stairways. In principle, their motion stereo approach could also be applied to

outdoor imagery for localization. However, the scope of the work is limited to detection and a

computation of bearing relative to the robot’s pose.

There is some prior work in modeling stairways as whole objects, but only in an ontological

context within the geoinformation literature. The work by Schmittwiken et al. in (12) presents a

Unified Modeling Language (UML)/Object Constraint Language (OCL) grammar for modeling

stairways as symmetric and partially recursive structures, while later work (13) demonstrates the

fitting of models from this grammar to 3-D data. Although they do seek to model the staircase as

a single object (that is also composed of repetitive sub-structures), like the other modeling
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approaches, it is more detailed and computationally intensive than is necessary for localization

while mapping. However, their approach is amenable to localization of a full stairway model for

urban 3-D modeling.

Some recent work in multi-floor mapping may provide some of the tools for implementing our

desired system. Shen et al. (14) have demonstrated that multi-floor exploration is possible in

open indoor environments with an unmanned aerial vehicle. Although their platform by nature

avoids the need for stair detection and traversal, their approach for mapping may one day be

applicable for ground vehicles. The barometric method presented by Ozkil et al. (15) for

measuring elevation, and therefore distinguishing floors of a building, will likely also be useful in

implementing our desired multi-floor exploratory system.

The most comprehensive system yet presented is also one that aims to perform the

complementary task to our detection and localization of ascending stairs: detection and traversal

of descending staircases. Hesch et al. (17) use a combination of texture, optical flow, and

geometry from a monocular camera to detect candidate descending stairwells, navigate to them,

and then align with and traverse them. Although they do not perform any explicit mapping of

stairwell location or present quantitative accuracy results, their implementation runs in real time

and the detector module from their implementation could be extracted and paired with our

ascending stair detector in a comprehensive multi-floor mapping system. No system has yet been

proposed for both ascending and descending stairway detection and traversal.

The related work in this area falls into three rough categories: stairway detection as a trigger for

traversal (1–3), fine-grained modeling (4–6), and localization relative to the robot’s pose (10, 11).

Unlike these works, ours is the first effort to place stairway detection and localization in the

context of mapping and decouple detection from traversal, which will enable multi-floor path

planning. We also present a minimal model that is sufficient to describe the location and

traversability of a stairway without the fine-grained modeling of the state of the art that is

unnecessarily expensive on a platform whose objective is exploration.
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3. Methods

3.1 Stairway Model

We propose a generative model to represent a stairway as a single object. For localization and

path planning purposes, planar models for all of the steps and risers are unnecessary, so a simpler

model will suffice: step dimensions and pitch should be adequate to allow the robot to determine

whether a stairway is traversable, and localization on a map should enable the robot to return to

ascend the stairs at a later time.

Our model consists of an inclined plane constrained by a bounding box, with stair edges wherever

there are well-supported clusters in the plane (figure 2). This model is parameterized by the

bounding box centroid (Bx,By,Bz) and dimensions (H,W ,D), pitch relative to the ground plane

(P ), and step dimensions (h,d). We assume that stair steps are approximately parallel to the

ground plane, so the bounding box top and bottom are parallel to the XY plane. For an inclined

plane model of

ax + by + cz + d = 0, (1)

the planes constituting the bounding box are given by

z = Bz ±
H

2
(2)

Figure 2. Stairway with corresponding model consisting of
bounding box (green), planar model (blue), and step
edges (red), as well as edge point cloud support for step
edge lines (rainbow). (Data: Davis Hall Front trial
from State University of New York [SUNY] at Buffalo
[UB] dataset).
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a(x− Bx) + b(y −By) ±
D

2

(√
a2 + b2

)

= 0 (3)

−cb(x− Bx) + ca(y − By) ±
W

2

(

c
√

a2 + b2

)

= 0 (4)

for the top/bottom, front/back, and sides, respectively. Here, the pitch P is computed as the

dihedral angle of the planar model and the ground plane: P = arccos (a, b, c) · (0, 0, 1). We

infer the parameters of the model from the extracted points corresponding to step edges.

3.2 Localization and Modeling

In order to build up a complete model of a stairway, we piece together many incomplete views,

potentially from many different perspectives, and estimate the parameters of the model from the

aggregate pool of data (see algorithm 1). Starting with an empty point cloud representing the

stair edges, we add to it the extracted edge points from each subsequent observation. We do not

explicitly align the detected edges, but instead rely on the robot’s estimated pose to approximately

align the independent observations (figure 3), and implement a number of statistical techniques to

ensure that the resulting model is robust to outliers and imprecise point cloud alignment.

Additionally, since a misaligned detection will equally affect all of the step edges extracted from

that observation, the step dimension estimates will not be subject to alignment error.

Algorithm 1 Stairway Modeling
1: Initialize point cloud E to be empty
2: for Each detection P ′ (see Alg. 2) do

3: Add points from P ′ to E

4: if # of detections is divisible by k then

5: Downsample E to fine voxel grid
6: Perform statistical outlier removal
7: Fit a plane m to E using RANSAC and compute pitch relative to ground plane
8: Remove outliers of m from E

9: Fit bounding box B to E and compute stairway dimensions (H ,W ,D)
10: Project E onto cross-sectional plane x, orthogonal to m and passing through bounding box cen-

troid
11: Find Euclidean clusters C from projected cloud Ep and compute their centroids
12: Sort C by ascending height, and compute differences in height and depth between adjacent cen-

troids with > n points of support
13: Average height and depth differences to compute step dimensions (h, d)
14: end if

15: end for
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Figure 3. Figure showing a map marked up with a marker for the
model of the detected stairwell, in addition to a camera
image and model view from the robot’s perspective.
(Data: Building 7 Interior trial from MOUT dataset).

Since each observation only adds a partial view of the stairway, we periodically re-estimate the

parameters of the model (in our experiments, after k = 5 or 10 observations). Our detector

operates at almost the full frame rate of the camera, so more frequent modeling is redundant. We

perform the following steps in order to estimate the model’s parameters.

To prevent our aggregate edge point cloud E from growing without bound, we first downsample

E to a 1-cm voxel grid (other grid sizes affect primarily speed and not modeling performance).

We perform statistical outlier removal to reduce noise in E. To the remaining points, we fit a

planar model p with RANSAC (19) and remove any outliers from E.
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We then infer the parameters of the stairway model from the remaining points in E. We

determine the bounding box centroid and dimensions by fitting a rectangular prism to the data

that is aligned with the ground plane but rotated in the XY plane to match the alignment of p.

We next compute the cross-sectional orthogonal plane that passes through (Bx,By,Bz) and project

the points of E to it. When accounting for alignment errors and unequal observation of each

step, we would expect there to be a cluster of projected points around each step edge. We

therefore find Euclidean clusters on the projected plane and treat each well-supported cluster

center (> 250 points) as a stair edge. We compute the differences in height and depth between

each pair of adjacent cluster centers, and then average these differences to determine the step

dimensions (h and d).

3.3 Stair Edge Detection

Inspired by some of the techniques used in other methods (2–4, 6–8, 10), we have developed an

ascending stairway detector that exploits the geometric properties that steps display in depth

images. On a deployed system, it runs in real time with high accuracy and robustness. In

particular, we find lines in a depth image that represent discontinuities where the depth from the

camera changes abruptly. In the depth field, a set of stairs will have a discontinuity at the edge of

each step that is above the height of the sensor. The tops of lower steps will be visible in the

sensor’s field of view and may not exhibit a strong enough depth discontinuity to be detected as

edges. Regardless of the horizontally rotated viewing angle of the camera, these discontinuities

will form a set of nearly parallel lines (with some effects of perspective) for all but tight spiral

staircases. We leverage this distinct depth signature by detecting all such lines of discontinuity in

the image, filtering and clustering them to find a near-parallel set, and ultimately fitting a plane to

the extracted stair edge points to confirm or reject the stairwell candidate hypothesis if they lie on

an inclined plane of traversable angle. By detecting these lines of discontinuity in the depth field

rather than a camera image, our detector is robust to appearance.

Given an input depth image, our algorithm proceeds in the following steps (please refer to

algorithm 2 and figure 4 for visual reference). All parameter values in the detection module were

determined empirically but remained fixed throughout all experiments.

We first perform edge detection with the Canny operator (20) to extract all pixels that lie on a

discontinuity in the depth field into an edge image. We use parameter values of 30 and 40 for the

two thresholds, and a kernel size of 3.
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Algorithm 2 Stair Edge Detection
1: Input: depth image D and co-registered point cloud P provided by depth sensor
2: Perform Canny edge detection on D to produce edge image E

3: Set to zero all edge pixels of E that border a depth value of 0 in an 8-connected neighborhood
4: Generate a set of candidate lines L using the probabilistic Hough transform on E

5: Compute the slope in pixel coordinates of all lines in L, and merge any nearly collinear lines
6: Compute a histogram of the slopes in L with 10◦ bins, and extract lines in the bin with largest frequency

±5◦ into L′

7: Compute a histogram H of the number of lines passing through each column of the image
8: Find the maximum frequency in H , and find the left- and right-most columns (l and r) containing this

frequency
9: Find the upper- and bottom-most lines (u and b) in the columns between l and r

10: Remove all lines from L′ that do not fall within the box bounded by u, r, b, and l

11: Reject image as a positive detection if | L′ |< 3 or r − l < 10 (enforce multiple steps and reasonable
overlap of lines)

12: Extract the points from P corresponding to the lines in L′ into a new point cloud P ′

13: Fit a least-squares plane p to the points from P ′

14: Reject image if the dihedral angle (φ = arccos(np · nhoriz)) between p and the horizontal is > 45◦

15: Return P ′

Figure 4. An example frame from an indoor testing video. Top
row (L to R): source depth image, edge image, edge
image with boundary lines removed. Bottom row (L to
R): candidate lines (in red) before filtering for orientation
and clustering, candidate lines after filtering, marked up
camera image with bounding box.

Even the most robust correspondence algorithm can still fail to compute depth for some regions in

an image due to poor texture, lighting effects, or occlusion. Structured light depth sensors also

are unable to compute depth for every pixel due to lighting or other error sources. In a depth

image, these invalid regions are often set to zero. To handle such data, we filter the initial edge

image to remove all edge pixels that lie on the boundary between valid and invalid depth regions.

In this way, we explicitly avoid considering any non-physical discontinuities in the depth image.
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We next use a probabilistic Hough transform (21) to detect straight lines from the edge image

with boundary lines removed. Parameter values for this step are distance and angle resolutions of

1 pixel and 1◦ for the accumulator, an accumulator threshold of 20, a minimum line length of 20,

and a maximum gap of 5.

Since some detected lines may be nearly collinear, we consider all pairs of lines Li : y = mix + bi

and Lj : y = mjx + bj, and merge them if they fit the following criteria: | mi −mj |< 0.25,

| bi − bj |< 10 pixels, and there are at least 10 pixels of Li within a distance of 5 pixels of Lj .

From the initial set of candidate lines, we seek to find the subset of them that have the highest

probability of being stair edges. We base our filtering techniques on the following assumptions:

stair edges will be nearly parallel to each other (although they may be at any angle due to an

oblique viewing direction); the lines will overlap a substantial amount in the horizontal direction

(that is, they appear stacked vertically); and the points on the step edges lie on an inclined plane.

To restrict our line set based on these assumptions, we first compute the angle in camera

coordinates of each line and compute an angle histogram with 10◦ bins. We consider only the bin

with the highest frequency but also keep lines that are within a −5◦ to +5◦ band around this bin;

all lines with other orientations are removed.

To cluster the lines in the image and ensure that they are vertically localized, we compute a

histogram that counts the number of lines that cross each column of the image. We compute the

maximum bin value hmax in the histogram and find the widest rectangle, in image coordinates,

such that all histogram bins in that range have frequencies of hmax. Any lines that do not fall

within this region are rejected. We perform two more filtering steps before we confirm a hit with

the detector. Since a pair of lines could constitute a texture or other physical artifact, we require

at least three candidate lines in order to proceed. Lastly, we extract 3-D points from the

remaining lines and fit a least-squares plane to them. We only accept the set as stair edge points

and return a positive detection if the plane is at an angle with the horizontal that fits with the

physical parameters of a traversable staircase (in our case, between 0◦ and 45◦, covering the range

of stairway pitches typically allowed by building codes). If a positive detection is confirmed at

this step, then the set of extracted edge points is passed on to the stairwell modeler module.

4. Experiments

Our system has been tested extensively on data collected at a MOUT site on all of the available

stairway types at the site, as well as on numerous negative examples. There were over 10
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stairway types throughout the site, both indoor and outdoor (figure 5), of a variety of dimensions,

and ranging from a few steps to a full flight. Two examples (shown in figures 6 and 7) had

riser-less steps, and one type was partially curved. It has also been tested at a building at the UB.

These datasets consist of nine recorded trials (seven and two, respectively).

Figure 5. Results of several runs from our datasets: Building 1
Rear (top left), Building 3 (top right), Building 7 Exterior
(bottom left), and Davis Hall Rear (bottom right).

Our experiments use an iRobot PackBot mounted with a Microsoft Kinect depth sensor for the

MOUT trials, and a TurtleBot (also with a Kinect sensor) for the UB data. Our system is

implemented in C++ in the Robot Operating System (ROS) environment, with image processing

performed using OpenCV, and point cloud processing with the Point Cloud Library (PCL) (18).

Although the Kinect restricts the usable range of the detector and limits outdoor use to shaded

areas, the dense depth image it produces provides high quality input data for our system. Several

of the trials from the MOUT dataset were captured outdoors and indicated good performance with
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Figure 6. Figure showing one failure mode of our system,
including camera and simulated views from the robot’s
perspective. Note that this stairway is both outdoors and
of a riser-less style, two challenges for our
implementation.

even somewhat compromised depth data. In principle, our approach could be applied out of the

box to a depth map produced by a stereo camera for outdoor detection, but this is as yet untested.

4.1 Detection

The detector is robust to viewing angle, stair appearance and size, and even partially curved

(although non-spiral) stairs. We obtained detections on 100% of the stairways on which we

tested the system, and obtained enough observations to build a model for all of the indoor

stairways we observed and all but one of the outdoor stairways (figure 6). However, one other

outdoor stairway failed to converge to an accurate model (figure 7). These failure modes for

outdoor stairways reveal a limitation of the sensor, as well as the challenge of scan alignment
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Figure 7. Figure showing another failure mode, including the final
model for the Container trial and camera view from the
robot’s perspective. Although our method is fairly
robust to misalignment, this example illustrates failure
due in part to an uneven ground plane and its
corresponding odometry challenges.

under noisy odometry. Over many hours of testing, there were a small number of false positive

observations (occurring only from a stairway railing and a set of bleachers), but in no instances

were there enough false detections to create a model when not in the presence of a stairway, and

these were greatly in the minority when a stairway was present, resulting in the false observations

being removed as statistical outliers and ultimately not affecting the model.

In all instances, the system requires less than 0.01 s to process each 320 × 240 frame on both an

onboard Intel Core i7 and an offboard Mac Mini when run in post-processing. As it is extremely

lightweight, the detector can effectively run in the background without requiring many of the
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resources needed for all of the other processes performing exploration in real time. Including the

modeling step, the full system is able to operate at 20+ Hz concurrent with mapping.

Another such failure mode exists if the ground surface is uneven, as with natural environments

where our ground plane assumption does not hold. Figure 7 illustrates another example of a trial

in which our approach failed to produce and accurate model. Here, the rough terrain causes

misalignment of the extracted edges, and although the bounding box is localized fairly well, the

alignment is off and the step estimates are imprecise.

4.2 Modeling

Visual results of modeling for all nine trials in the two datasets can be found throughout this

report in figures 1, 2, 3, 5, 6, and 7. Where possible, rendered 3-D models of the corresponding

buildings were superimposed and aligned with the map such that the stairway model is overlaid.

We also measured ground truth step dimensions and pitch for several of the trials, and we present

those results in table 1. Each of these results was achieved with < 100 observations. In general,

the estimates are quite accurate, modeling the step dimensions to within 2 cm and the pitch to

within 3◦, on average. However, one frequent source of inaccuracy is underestimation of the step

width, with a mean error of 17 cm. This is expected, though, based on the stair detection

procedure, which only extracts edge points in a horizontal window of the depth image where all

of the edge lines overlap, leading to observations that are always narrower than the lines

producing them. Each trial’s results indicate that a robotic platform would be able to determine

the traversability of that stairway using this system.

We also present some results showing the convergence of the models for several trials. Figure 8

shows the evolution of the model parameters over time for the two UB trials. Here, all of the

parameters are normalized by their ground-truth values, so each quantity should tend toward 1

over time. Both trials indicate that after a small number of detections, the models approach their

final state.
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Table 1. Table of model step estimates and ground truth values
(GT).

Trial Height (m) Depth (m) Width (m) Pitch (◦)

B.1 Front 0.174 0.257 0.977 34.0

GT 0.196 0.254 0.965 37.6

B.1 Rear 0.166 0.252 0.715 33.0

GT 0.196 0.254 0.965 37.6

B.3 0.169 0.245 0.689 35.4

GT 0.192 0.263 1.015 36.2

Davis Front 0.175 0.323 1.076 28.3

GT 0.181 0.305 1.226 30.7

Davis Rear 0.169 0.311 1.048 29.4

GT 0.165 0.292 1.175 29.5

Mean Error 0.017 0.012 0.173 2.3

Variance 0.000195 0.000246 0.0165 3.52

5. Future Work

Ultimately, we want this work to enable a new robot behavior: fully autonomous multi-floor

exploration by ground robots. With the localization and modeling system presented here, we aim

to take the first step in that direction. Other problems that would still need to be solved include

incorporation of elevation measurements into both the mapping and exploration algorithms,

execution of an autonomous stair climbing routine after a stairwell is found, and modification of

path planning algorithms to set stair traversal as a high, but finite, cost path.

One immediate problem for our future work is the extension of our approach to multiple

stairways within a single map. We currently assume that there is only one stairway in the

environment, but in lifting that assumption, we will need the system to determine whether each

new observation should contribute to an existing model, or whether it represents the detection of a

new stairway in the environment. For all but very wide stairways, proximity should be a strong

discriminator between edges extracted from different stairways, with such observations being

much farther from an existing model than ordinary statistical outliers.
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Figure 8. Convergence of normalized model parameters for Davis
Front (top) and Davis Rear (bottom) trials from the UB
dataset.

Another major component of a multi-floor exploration system is a solution to the complementary

problem of descending stairway detection and modeling. Although there is no explicit modeling

in reference 17, they present techniques for performing detection of descending stairways using

cues from camera imagery. Our approach for ascending stairway detection is not transferable to

the descending problem, but could be paired with such a system. Additionally, by maintaining

models of any previously ascended stairways, a robot could more easily descend those stairways
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for which it has a location and model if the full dimensions of the stairway were determined

during ascension, using the initial model as a base from which to extrapolate.

Another potential research avenue is the extraction of lines directly from the point cloud, rather

than from the depth image. This would open up our modeling technique to a wider variety of 3-D

sensors, and enable post-processing of 3-D maps for stair locations.

6. Conclusions

We present a novel, minimal, generative model for a set of stairs, as well as a system for fitting

that model to data extracted and aggregated from many observations of a stairways with a depth

camera. Our model is sufficiently detailed to permit the robot to determine the traversability of a

set of stairs, while simple enough to be computed in real time and robust to errors. Providing the

observations for the modeling module is a stair detector that uses image processing techniques to

find lines of depth discontinuity and enforce geometric constraints on them in order to extract the

points on just the lines corresponding to stair edges. We have tested our system on a variety of

stairways in both indoor and outdoor environments, as well as in many environments where no

stairs exist. The results indicate both robustness in detection and modeling, and accuracy in

parameter estimation. This work represents an initial step toward autonomous multi-floor

exploration by unmanned ground vehicles.
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